Numerical Techniques for the Treatment of
Quasistatic Solid Viscoelastic Stress Problems

S. Shaw
M.K. Warby
J.R. Whiteman

C. Dawson

M.F. Wheeler

January 1993

TR93-02



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1993 2. REPORT TYPE 00-00-1993 to 00-00-1993
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Numerical Techniquesfor the Treatment of Quasistatic Solid Viscoelastic | o -1 nUMBER

Stress Problems
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Computational and Applied M athematics Department ,Rice REPORT NUMBER
University,6100 Main Street M S 134,Houston, T X,77005-1892

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 28
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



3-11-1992 16:27 Page 1

Numerical Techniques For The Treatment of
Quasistatic Solid Viscoelastic Stress Problems.

S.Shawt, M.K.Warby and J.R.Whitemani.
BICOM, Institute of Computational Mathematics, Brunel University, Uzbridge, England.

C.Dawson and M.F . Wheeler.
Department of Mathemetical Sciences, Rice University, Houston, U.5.A.

Abstract.

For quasistatic stress problems two alternative constitutive relationships expressing the stress in a
linear viscoelastic solid body as a linear functional of the strain are derived. In conjunction with
the equations of equilibrium, these form the mathematical models for the stress problems. These
models are first discretized in the space domain using a finite element method and semi-discrete
error estimates are presented corresponding to each constitutive relationship. Through the use
respectively of quadrature rules and finite difference replacements each semi-discrete scheme is
fully discretized into the time domain so that two practical algorithms suitable for the numerical
stress analysis of linear viscoelastic solids are produced. The semi-discrete estimates are then also
extended into the time domain to give spatially H! error estimates for each algorithm.

The numerical schemes are predicated on exact analytical solutions for a simple model problem,
and finally on design data for a real polymeric material.

1 Introduction.
1.1 Outline.

This paper is concerned with the computational modelling of problems of solid mechanics in which
the material is assumed to be linear viscoelastic and the deformation is quasistatic (i.e. the inertia
term in the momentum equations is neglected, providing equilibrium equations). For any problem
of this type our purpose here is to produce a mathematical model, to discretize this to produce a
numerical algorithm, to derive a priori error estimates for the error associated with the numerical
solution and to apply the scheme to a number of test problems for numerical verification. We
have additionally applied the algorithm to a problem involving experimental data from a specific
polymeric material.

Two forms of the constitutive relation are proposed, giving two models. These involve the
rate of change with time respectively of the stress relazation function [1,3,4] and the displacement
vector. Both models are first discretized in the space variables using a Galerkin technique, thus
setting up semi-discrete approximating problems. These are further discretized in time through
the application respectively of quadrature rules and finite difference replacements, thus producing
two fully discrete approximating formulations. The errors in these are analysed and, in §§3,4, «
priori estimates, for the semi-discrete and fully discrete schemes respectively, are derived. The
results of numerical experiments are given in §5 for some problems where the exact solutions have
been obtained through application of the correspondence principle of Schapery [3,4], and for the
specific polymeric material as above.

1.2 Viscoelastic materials.

The stress analysis of solid materials is usually restricted to the cases either of linear elasticity,
under the assumptions that the deflections considered are in some sense small and that the stresses
occuring in the body never exceed the yield stress of the material, or of plasticity where the yield
stress is exceeded and some permanent deformation of the material takes place. Whereas linear
elasticity utilises a simple relationship (Hooke’s law) between stress and strain, plasticity is a
nonlinear phenomena and in flow theory the constitutive relationship is strain rate dependent and
thus depends on the loading history.

1 Supported by an SERC studentship.

1 Supported in part by the United States Army Research and Standardization Group, Europe, under contract
No. DAJA45-89-C-003
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There is, however, a class of materials, solids and fluids, the deformation of which can be
modelled using linear theory, but for which linear elasticity is not appropriate. These materials
are termed viscoelastic since in deformation they display both elastic and viscous flow properties.

Perhaps the most common examples of viscoelastic materials in engineering science are the
thermoplastic polymers. In simple terms such materials may be considered to be composed of many
so called long chain molecules arranged more or less at random and intertwining with each other
in a “spaghetti” like manner. Neighbouring chains may be joined to each other by cross-linking.
When a mechanical load is applied to such a material there will be an elastic deflection, due to the
the ability of each chain to stretch, and a viscous flow, caused by the sliding of the molecules over
one another; the extent to which molecules may slide in this way is determined by the amount of
cross-linking. This dual (elastic plus viscous) effect gives rise to the term viscoelasticity. If the
degree of cross-linking is very small the flow may continue unchecked and the material is considered
to be a viscoelastic liquid. Conversely, if the degree is high the flow will eventually cease (unless
the applied load is large enough to rupture the material) and the material is a viscoelastic solid.
In practice this distinction may be somewhat blurred, particularly in nonisothermal contexts near
the melt temperatures of viscoelastic materials.

In the present paper we consider only compressible, isotropic viscoelastic media undergoing
“small” deformations subject to isothermal, quasistatic conditions.

1.3 Linear viscoelasticity.

Experimental observations of viscoelastic materials under loads, see e.g. 3], suggest that at any
given time the stress at a point in a viscoelastic medium depends not only on the current strain
at that point but upon the entire strain history from the instant that the material was in its
original unstressed state. For this reason viscoelastic materials are described as having memory.
Mathematically this suggests that the stress may be written as a functional of the strain, or vice-
versa; a linear functional gives rise to the linear viscoelastic model. When the material function
involved in this functional depends only upon the relative time (i.e. the algebraic difference between
the present time and the time in the deformation or loading history) the material so described is
termed “non-ageing”.
In order to arrive at an explicit representation of this functional we have the following:

Hypothesis 1.3.1. The Boltzmann superposition principle [4].

For a linear, non-ageing viscoelastic body the stress arising at position = and time ¢ from a sequence
of strain increments {Ae(z, t,-)}f_’__;l, tny_1 < t, applied to the body may be expressed as the sum
of the stresses {Ac*(z,t)} X3! induced by each individual strain increment.

Two readily observable phenomena characterizing a viscoelastic material are those of creep
and stress relazation. Consider a slim viscoelastic cylindrical bar subjected to a constant axial
(tensile) load. In the deformation one would observe an instantaneous elastic deflection followed
by a viscous flow, possibly up to some equilibrium deformation; this is termed creep. Now, consider
a similar bar subjected to a constant axial strain. The stress in the bar will instantaneously increase
as an elastic response and will thereafter decay to some constant (possibly zero) value; this is stress
relaxation.

2 Governing equations.

2.1 Constitutive relationship.

For every time t € T := [0,t;] we consider the deformation of an isotropic viscoelastic body
G, characteristically solid, the interior of which occupies the region 2 C R", where n = 2,3,
with convex polygonal or polyhedral boundary 9Q and resisting the action of a body force f :=
(fi)’, and a surface traction g := (g;)?_,. The resulting displacement at a point = := (z;)[-, €
Q := QJI9Q, the reference configuration, is denoted by u := (u;)%;, and the components of the
symmetric stress and strain tensors are denoted, respectively, by oy; and ¢;;, where 1 <4,j < n.
For the purposes of calculation these components will be ordered in %n(n + 1)-tuplets, such that,
for n = 3:-

0 :=(011 022 033 013 013 023)" (2.1.1)
€ :=(€11 €22 €33 €12 €13 £23) . (2.1.2)
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with the reduction to lower space dimensions being obvious. It is to be understood that (w;)7,

symbolises an ordered n-tuplet, (wy,..., wn)T € D™, where D is some appropriate set containing
the w;. The strain tensor is obtained from the displacements via
1 8u.- Buj
Eij == — . 2.1
H 2 (6zj + (92:,' ( 3)

In isotropic linear elasticity there is a constitutive relationship between stress and strain given by
Hooke’s law. In component form this relation can be expressed as

aij(z) = M2)V-u(2)8ij + p(z)eij (u(2)), (2.1.4),

or equivalently in vector-matrix notation the law can be expressed as
o(z) = D(z)e(z), (2.1.4),

where A and p are the Lamé coeflicients, é;; is the Kronecker delta, V- is the divergence operator
and D is the constitutive matrix. From (2.1.4); and (2.1.4); if follows that the elements of D are
given in terms of A and p. Thus for a general compressible linear elastic material, the constitutive
relation involves two independent scalar functions of position which, as is given above, can be
taken as A and u. These may be the best pair of functions to take for the mathematical neatness of
equations (2.1.4); but other functions are often more useful in describing the physical features of
a deformation. Specifically we have the bulk modulus K, Young’s modulus E, the shear modulus
G and Poisson’s ratio v which are given respectively by

_ 1 _ G(3A+2G) _ _ A
K_/\+3p, E= PR G=uf2 and V—-2(/\+G) (2.1.5)
and for most elastic materials we would expect
K>0, E>0 and p>90 (2.1.6)

which implies that -1 < v < 0.5 but in general we would expect that 0 < v < 0.5 which corresponds
to A > 0.

In order to arrive at a constitutive relationship linking stress and strain for a linear viscoelastic
material at a particular time ¢ we use hypothesis 1.3.1 in conjunction with a Hooke’s law type
relation. We do this as follows. We let £ € Q be a fixed point and we suppose that the strain
history at z is of the form shown in Fig. 2.1.1. That is we suppose that each component of strain
is a step function with respect to the times to < t; < ... < ty-;. Specifically we have

_ 0, t <o,
6(’“"t)—{e"(z), ti<t<tips, i=0,1,.. ,N—1. (2.1.7)

and thus the corresponding strain increments Ae(z, ;) are given by

O(x), 1=0
A, ti) = {f:"((z))—e"—l(z), 1<i<N-1. (2.1.8)

The first strain increment Ae(z,tg) = €°(z) gives rise to a stress 0%(z,t) which in the case of a
viscoelastic material decays the further the time ¢ is from the time ¢ty when the increment was
applied. That is mathematically we have

o%(x,t) = D(z,t — to)e(z, to), t>to, (2.1.9)

where the matrix function D in Hooke’s law, which only depends on position, is now replaced by
the matrix function D which depends both on position and the elapsed time with the components
of D decreasing monotonically with the elapsed time. In (2.1.9), 6°(z, t) is of course also the stress
increment Ag®(z,t). Similarly the stress increment corresponding to the strain increment Ae(z, t;)
is given

Act(z,t) = D(z,t — t;)Ae(z, t;), t>t; . (2.1.10)
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Hypothesis 1.3.1 is concerned with how these increments can be combined to give the actual stress
o(z,t) at position z and time t and it states that these increments can be added in a linear way
to give

N-1 N-1
o(z,t) = Y Ad(z,t)= Y D(z,t - t;)Ae(s, t;)
1=0 1=0
N-2
- (D(z,t —t;) - D(z,t - t,'+1))e(:c,t¢) + D(z,t —tn_1)e(z, tn_1) .
i=0
(2.1.11)
Ekl(x,t)A
eh(®) 5 P cu(@) .
] 1 ¢ : : €kt (I)
C I A T R B e
] ] ] ] 1 [}
] 1 1 ) 1 ] )
i : : ‘ — i
‘ \ ‘ i \ ‘ H
[} | | ] 1 [ ]
] 1 ] 1 ] 1 ]
] i 1 1 | ] ]
| [] | 1 ] 1 ]
t [} ] 1 ] ] ]
to ty t; tn t

Figure 2.1.1 The step function for the kI component of strain

If D is continuously differentiable with respect to its time argument then extending this idea
to the limit as N — oo with ¢ty — ¢t and max(t; — t;—;) — 0 in the usual way gives, using the last
part of (2.1.11),

*8D(z,t — 1)
. ——'—a?———é(z, T) dr . (2.1.12)

In the case of a smooth deformation, specifically for which 0¢/87 exists except possibly for an
initial jump discontinuity of € at tg, the limiting argument just described gives, using the previous
part of (2.1.11),

o(z,t) = D(z,0)e(z,t) —

O(z,t) = D(z,t —to)e(z,to) + /t D(z,t — T)%(I, T) dT . (2.1.13)

Note that (2.1.13) could have been formally derived from (2.1.12) by integration by parts (and
vice-versa) and also both forms are implicitly applicable only to non-ageing materials since the
stress relaxation matrix D depends only upon the relative or elapsed time.

Next we generalise to the case of an ageing material by generalising the arguments of D.
Specifically we take D to have the 3 arguments z, t and 7 where =z is position, ¢ is the current time
and 7 < t is a previous time and we define the constitutive relations

o(z,t) = D(z,t,0)e(z,0) + /t D(z,t,7)e'(z,7) dr

¢ (2.1.14)

= D(z,t,t)e(z,t) — / D'(z,t,7)e(z, ) dr,
0

where we have assumed for convenience that tg = 0 and / denotes differentiation with respect to
7. In component form the relation can be written as



3-11-1992 16:27 Page 5

oij(z,t) = Mz, t,t)V-u(z, t)6i; + p(z, ¢, t)es; (u(z, t))

—/0 Nz, t, 7)Veu(z, 7)6;; + p' (2, ¢, T)ei; (u(z, 7)) dr, (2.1.15)

oij(z,t) = Az, t,0)V-u(z,0)8;; + p(z, t,0)e;; (u(z, 0))
+ /t Mz, t, 7)V-u'(z, 7)6; + p(x, t, T)ei; (W' (2, 7)) dr, (2.1.16)

Unless specifically stated otherwise the Einstein summation convention, as used here, will be used
in all that follows.

The functions A(z,%,7) and p(z,t, ) are the viscoelastic analogues of the Lamé coefficients
that appear in linear elasticity (2.1.4). The time dependent parts of these functions arise from the
stress relaxation functions characterizing the material. We must assume that these functions exist
and that they, in general, will vary for different modes of deformation, for example bulk or shear.
However, for a non-ageing material any pair of these is, in principle, sufficient to determine the
time dependent parts of A and p via the correspondence principle [3,4]. The spatial, z, dependence
of A and g will usually be of little interest but is retained here for generality.

To facilitate the forthcoming error analysis we make the following, physically reasonable,
assumptions on A and y:

Assumptions 2.1.1.
i) For every fixed t € Z and 7 such that t — 7 € 7

Mz, t, 1), p(z,t,7)€H™ ({t —1€TI};L(Q) ﬂﬁw(Q)) wr ({t -TE I};[:oo(Q)>)

where we assume m may be taken sufficiently large for the following analysis to remain valid.
So on a physical basis we expect A and p to be well behaved in time, but must allow for
material property variation in space. This would be the case if, for example, two different
materials were mechanically joined in some structure.

i) Forevery t € Z: 0 < Mz,t,7), pu(z,t,7) Vr€QandVt—7€1.

1) Forevery t € Z: 0 < M(z,t,7), p'(z,t,7) Vz€QandVt—T€1.

) Causality: Vt €Z  A(z,t,7),p(z,t,7) = 0 if 7 > t. This simply means that we do not allow
future events in the deformation history to affect present behaviour. =

2.2 Two weak formulations: P; and P,.
Based on the law of conservation of momentum we consider the quasistatic equations of equilibrium

n
60’,'_7'

ji=1 ax] (

z,ty= fi(z,t), i=1,...,n, z2€Q, teT, (2.2.1)

with the boundary conditions
u(z,t)=0, zeTP#£0 tez, (2.2.2)

> aijni(z,t) = gi(z,t), z€TN, tel, i=1,...,n. (2.2.3)

j=1

Where I'? TN = 6Q and 7 := (; )71 is the unit outward normal to 9Q2. A weak formulation of
(2.2.1,...,3) is formed by taking the scalar product of (2.2.1) with a test function v := (v;)2_, € V,
where Vt € 7

V.= {v e (M) :v(z) =0Vz e FD}. (2.2.4)

Integrating by parts [5] we produce the weak formulation in which we seek u € V at each t € 7
such that

/ o(u;z,t) - e(v(z)) dz :/ fv d2:+/ gvds, YoeEV, (2.2.5)
Q o) an
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where - indicates the Euclidean inner product and the “test strain”is given by

1/ dv; av,- ..
(0) = 3 (5;] + -87) VeV, 0<ij<n (2.26)

Use of the constitutive relationships (2.1.15) and (2.1.16) enables two alternative weak formula-

tions, P; and Py, of the quasistatic linear viscoelastic stress analysis problem to be defined. For
notational convenience, we let

a(Mz,t, 1), ulz,t,7),u(z,t,7)) = /n/\(:c,t,‘r)Vu(x,t)V-v(:c)—{—y(z,t,r)e;j(u(::,r))sij(v(z:)) dz

(2.2.7)
which is essentially just the usual bilinear form used to describe linear elasticity. The two problems
are then as follows.

P;: Find u(z,t) € L2(Z; V) such that

a((A(=,1,1), w(=,1,1), u(z, 1)), v(z))

- /Ot a((N(z,t,7),4'(z,t,7),u(z,7)),v(z)) dr = l(v;t) YveVandVteI. (2.28)

P,: Find u(z,t) € H(Z;V) such that

a((Mz,t,0), u(x,t,0),u(z,0), v(z))

+ /t a((Mz,t,7), p(z, t,7),u'(z, 7)), v(z)) dr = l(v;t) VveVandVteZ, (2.29)
0

where I(v;t) := (f(z,t),v)a +(9(z,t), v)aq, and (-, -)s is the inner product on L3(B). In each case
we have assumed that it is permissable to interchange the order of spatial and temporal integration.
In much of the following the z dependence of A and u will not be indicated explicitly.

In order to facilitate the analysis we first state some assumptions, give some notation and
state three inequalities which will be required.

Assumptions 2.2.1.
i). For P; and Py: f(z,t) € Lo(Z;(L2(Q))").
ii). For P, and Py: g(z,t) € L2(Z; (1} (9Q))"~1). .

Definition 2.2.1. For v; € HP(Q) we have

1/2
il o= ( ) nD“vini,(m) . .

la|<p

Definition 2.2.2. For v € (H?(Q))™ we have

m 1/2
lollp.a o= (Zuv;uz,n) | .
=1

Definition 2.2.3. For v € £5(Z; H?(2)) we have

1/2
oll sz = ( Lol o) dr) . .
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Lemma 2.2.1. Korn’s inequality (8], for v € (H*(Q))™, and ¢;; defined by (2.2.6) we have

S [ esveiso) de 2 Clplt

i,5=1
for some constant C > 0 . n
Lemma 2.2.2. Continuous Gronwall inequality [9,12]. Let u, v, w be piecewise continuous non-

negative functions defined on the interval t € [0,a}, v being non-decreasing. If, for each t € [0, a],
3C > 0, independent of t, such that

u(t) + w(t) < v(t) + C/O u(s) ds,
then
u(t) + w(t) < v{t) exp(CH) - .

Lemma 2.2.3. Discrete Gronwall inequality [9]. Let u, v, w be non-negative functions defined on
T = {tE’R:t:jk; i=0,1,....J; T:Jk}

with v(t) being non-decreasing and k > 0 being constant. If, for each t € Ji, 3C > 0, independent
of t, such that

t—k

u(t) + w(t) < v(t) + Ck Y u(7),
7=0

then
u(t) + w(t) < v(t) exp(Ct) . u

Remark 2.2.1. Under very mild restrictions on A and g which are covered by assumption 2.1.1,
it can be shown that a((/\, TR ) is a symmetric continuous V-elliptic bilinear form for each
t,t — r € T see, for example [6]. The V-ellipticity may be shown by first observing that

3C(t) € [0,3] such that ||V-ulls o < COIull2 o VueV,

and then using the Korn inequality (lemma 2.2.1) to write:

[ avuvude+ [ pewes () do 2 (G0 + GO 0,
Q Q
where fi(t) > 0 by assumption 2.1.1. -

Assumption 2.2.2. We shall assume throughout that there exists a unique u(z,t) € L£o(Z;V)
that solves Py. This in fact may be shown using the Picard iteration, detailed by Linz [13], and
exploiting the V-ellipticity of a((, i, ), ). -

3 Semi-discrete formulation.

3.1 Preliminary notation.

In this section we define semi-discrete problems approximating P, and P5 by forming their cor-
responding finite element approximations in space. For this the region 2 is partitioned into M,
disjoint finite elements Q? such that Vt € T

M.
0Q" = 9Q and Q" := | ] QF, (3.1.1)
i=1
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l.e. the partition does not change with time. Also we define over this partition the finite dimensional
space

Vii={vh eV vl € (Pp(2)", 1<i< M.}, (3.1.2)

where, (P,(z))" denotes the set of p** order complete polynomials in the variables (z;)P=1.

We will approximate the weak solution u(z, t) to either of (2.2.8) or (2.2.9) by u”(z,t) written
in terms of the basis functions {¢; (.1:)};‘4;l defined over Q*. Specifically we have

Mh
(uh(z, 1)), = Y ¢i(z)Ljs(ut(z, 1)),
j=1

where M" > 0 is an integer depending upon the partition relating to the number of nodal pa-
rameters (usually this will simply be just the number of nodes.) and L;; is the operator which
extracts the i** displacement component associated with the j** basis function for the finite element
approximation. In this way, for a given ¢t € 7 we write

uh(z,t) = N(z)U(t), ' (3.1.4)

where for any r € Q and any t € 7

VO) = (L @) Lana (022 0)) € R

N(z) =[®1(z) --- Bpn(2)] € (H‘(uﬁ{‘))"'"“", (3.1.6)
®i(z) =I4i(x) (3.1.7)

where [ is the identity on R™. Using (2.1.3) we define the approximate strain as

et (ub(z,t)) = B(z)U(t) (3.1.8)

h
where B(z) € (Eg(Q))n(n+1)/2'"M 1s a matrix whose entries consist of derivatives of the basis
functions.

3.2 Semi-discretization of P;, and error analysis.

3.2.1 Semi-discretization.
The approximate stress is defined via (2.1.15) and (3.1.8) yielding

ot (uh;z,t) = D(z,t,t)B(z)U(t) - /ot D'(z,t,7)B(z)U(7) dr. (3.2.1)
We then have the semi-discrete approximation to Py:
P}: Find u*(z,t) € £L2(Z; V") such that
a((A(z,4,0), w2, 1,8), uh(z, 1), v"(2)
- /:a((/\'(x,t,r),p'(x,t,r),uh(r,r)),vh(a:)) dr=1(v";t) VYoh e V' = (3.2.2)

which may be written as

A(t, )U(t) — /ot A'(t,r)U(7) dr = F(t), (3.2.3)

where A is the positive definite (due to (2.2.2) and assumption 2.1.1) finite element stiffness matrix
defined by

Alt,s) := /ﬂ BT (z)D(z,t,s)B(z) dz. (3.2.4)
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Remark 3.2.1. Note that (3.2.3) may be written as

t
U(t) = G(t) +/ K(t,m)U(r) dr,
0
where
-1 N
G(t) .= (A(t,1)) T F(t) € (L2(T)) ",
K(t,7) = (A(t0) T A7) € (L2() ™,
for an integer N depending upon the partition of Q and the value of n. The assumptions 2.1.1 and

2.2.1 ensure that there exists U(t) € L2(Z) that solves (3.2.3), see for example Tricomi [10] where

the analysis for a scalar equation is given. -

3.2.2 Error analysis.

In this section we derive a H!-error estimate for the semi-discrete approximation u®(z,t), given
by (3.2.2), to the solution u(z,t) of (2.2.8), for this we employ the technique of elliptic projection,
see [7]. For any t € T the elliptic projection 4"(z,t) € £2(Z,V*) of u(z,t), the solution to (2.2.8),
onto the test space V! is defined by

a((Mz,t,t), ulz, t,t), u(z,t) — @P(z,1)),v*) =0 Vo € VP, (3.2.5)

If we define

ni=u—ak, ¢ = at —uh,

set v = v" in (2.2.8), subtract (3.2.2), use the projection (3.2.5) and omit the implicit dependence
on z for clarity we have:

a((Mt, 1), u(t, 1), ¢(2)), v") :/0 a((N'(t, ), (¢, 7), n(7)), v") dr
+/O a((N'(t, ), (¢, 7),{(T)),v") dr. (3.2.6)

Since we seek to estimate the error ||u — u*||; o, using the above definitions we have immediately
that, fort € 7,

llu(z, 8) = u*(z,t)ll1.0 < lIn(z, Ollua + 1K, e, (3.2.7)

and the task is now that of bounding the terms n and ¢ in the norm || - || .

Now, for any t € I, we choose v* = ((t) in (3.2.6) and observe that remark 2.2.1 gives a
C1(t) > 0, thus allowing (3.2.6) to be written as

CillS@IE o 5/0 a((N(t, 7), (8, ), n(7)), C(2)) dr
+/0 a((N(t, ), 1t 7),4(7)), (1)) dr. (3.2.8)

We proceed by noting the following

Lemma 3.2.1. Define the symbol (- ,- ,-) by

b(¢,V-n, V() ::/0 Ld)(z,t,s)V-n(x,s)V~C(z,t) dzds
where

é(z,t,5) € L2((0,t); Loo) for each t € 7
n(z,s) € L2((0,1); (H}(Q)")
((z,t) € (H(Q))" foreach t € 7.
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Then
b(¢, V-1, V-¢) < {|8(5)lo,c0,)llE O, alln(s) caqo,00 72y VEET,

where

#(s) = ess sup ¢(z, 5).
TN

Proof. Interchanging the order of integration and liberally applying the Cauchy-Schwartz inequal-
ity gives

b6, 91,90 = [ ( / () n(s) ds) V(1) dz

<ticthal [ (| " 5(5)Vn(s) ds>2 dz]m

1/2
< ||<||m[ J 1618 0 19008 . dx]

< 18llo,co.0)lI¢H,llmllcacco,trsrrcanym)- =

Noting the definition of a((z\, TR ) and applying lemma 3.2.1, coupled with an almost identical
argument for the ¢ terms (i.e. consider b(¢,e(n),(¢)) in the lemma), we write (3.2.8) as

IK(@)lla < C2 (||'I(T)||z:z((0,t);w(n))n) + ||C(T)Hc,((o,t);(w(n))n)) (3.2.9)

with
Ca = C7 (IVllo o,y + 9l llo, o) (3.2.10)
(&) ::t—:gfo,t]CI. (3.2.11)

Squaring both sides of (3.2.9) and using the inequality
2ab < a’?4b*  Va,beR, (3.2.12)

we have by Gronwall’s inequality (lemma 2.2.2)

ICOIE o < 2C3UI(NZ 0.0 @ymy + 203NN Z 20,09, )
= IK®l,a < CslIn(T)laqo,;mr )~y exp(Cit), where Cz:= /2C;.  (3.2.13)

Assuming a suitable discretisation of the domain Q and using assumptions 2.2.1 we have, see
[6], constants C,, > 0 and « > 0, depending upon the regularity of the weak solution, the degree p
of the approximating polynomials and the mesh partition (i.e. the space V*.), such that

In(z,Ollia < € jnf llu = *a
< Cph®lu(z, 1400 VEET, (3.2.14)
where
h:= max diam Q}.
1<i<M.

Hence, we have the following semi-discrete error estimate:

Theorem 3.2.1. Assuming that u € Lo(Z; V) L2(T; (H'+(Q)") N Loo (T; (HI(Q))") and
that ©* € Lo0(Z;V*)( L2(Z; V"), and observing assumptions 2.1.1, then for the error associated
with P%, the semi-discrete aproximation toP,¥t € Z 3C > 0 depending upon u but independent
of h such that

|lu(z,t) — uh(z:,t)Hl,n < Ch*.
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Proof. Use (3.2.7) with (3.2.13,14) to write at any t € 1:

llu(z, ) =u™(z, )l1.0 <Cph*|u(z, t)|14a.0+CsCrh®|u(z, T)| 240,03 ) exP(C5t/2)
<Coh®[u(z, )] ez rr+e)ny + CaCrhlu(z, 7)oz (ra+e(aymy exp(C31/2)

<Ch*®
where
Cy = sup Cs.
t—-T€Z
and
Ca = sup Cj,
t—1€Z
The existence of Cy and Cs are guaranteed by assumption 2.1.1 and remark 2.2.1. n
3.3 Semi-discretization of P;, and error analysis.
3.3.1 Semi-discretization.
Again using (3.1.8) but this time with (2.1.16) we define the approximate stress through
i
o (uh; 3,t) = Dz, t,0)B(z)U(0) + / D(z,t,7)B(z)U"(r) dr. (3.3.1)
0

In which case we have
P%: Find u?(z,t) € V* for each t € T such that
a((Mz,1,0), u(z, 1, 0), u*(z, 0)), v*(z))
+/Ota((/\(x,t,r),p(z,t,f),(uh(x,r))l),vh(z)) dr =1(v";t) W eVh, (33.2)

which may be written as

/t A(t, T)U'(1) dr = b(2), (3.3.3)
where
b(t) := F(t) — A(t,0)U(0). (3.3.4)

The initial condition U(0) is found via the equation b(0) = 0, i.e. by solving a problem of linear
elasticity at ¢ = 0. In this case we have produced a Volterra integral equation of the first kind for
U'(t).

3.3.2 Error analysis.

As a rule Volterra integral equations of the first kind are rather more difficult to deal with than
those of the second kind (see for example [10,13]), moreover once the initial condition has been
determined (2.2.9) is actually an integrodifferential equation for u(z,t) of a non-standard type.
We have not attempted a direct semi-discrete error analysis for Py here, but choose instead to rely
on the observation that if the numerical algorithm promised by P; is to be useful then u'(z,t) is
required to exist, at least in the weak sense, and so we may simply state:

Theorem 3.3.1. If the conditions required for theorem 3.2.1 are satisfied with the further con-
dition that u(z,t) € WHL(Z; V) L2(Z; V) N L2(T; (HH(Q))") N Lo (T; (H1+"(Q))n) - a suffi-
cient condition for this extra regularity in time may be provided by strengthening assumption 2.2.1
to f(z,t) € CY(Z; (L2(Q))") and g(z,t) € C}(T; (H¥(8Q))"™"), then for the error associated with
P, the semidiscrete approximation to Py, 3C > 0 V¥t € T such that

lu(z, t) = u*(z, t)|l1,0 < ChO,

and this C is the same as that appearing in theorem 3.2.1.

Proof. Integrate (2.2.9) by parts to yield (2.2.8) and (3.3.2) to yield (3.2.2), because of the

uniqueness, assumption 2.2.2, the result of theorem 3.2.1 may be applied. -
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4 Fully discrete formulation.
4.1 Preamble.

To provide fully discrete approximations to P? and P} we use respectively the trapezoidal rule
for numerical integration and a type of product integration rule coupled with a finite difference

replacement. In the ensuing analysis we assume, in both cases, a constant time step k := t; —
ti_1,t=1,...,1. The time domain 7 is discretized into
It ={0=ty, --- ,ti, - ,t1ER: and t; >ty for 1 <i< I} CT. (4.1.1)

4.2 Full discretization.

4.2.1 Full discretization of P;.

In order to present a fully discrete scheme for P; we need to discretize P? in time, for this we
utilise the trapezoidal rule for numerical integration, the generic form of which is:

t; i
3 ki
6(k, ;) =/ y(z) dz - 5 (-1 + %), (4.2.1)
0 i=1
where
Y = y(zi),
k,’ =Ty — Ti-1, ISZS]SI, (422)
Then by setting
k= lnslg {ki}, (4.2.3)

and assuming appropriate continuity of y, 6 may be estimated by
16(k, ;)| < Cik*|y"(€)|,  for some £ € (0,¢;). (4.2.4)

Thus, we replace the integral occuring in (3.2.3) with the trapezoidal approximation, neglect
the error term §é, and arrive at:

P’;’k: Find (u"(z))j € V* for each t; € I* such that

J
k
Aty 5)U; = D2 2 (A, Uy + A (8, 44-1)Up1) = F. (4.2.5)

g=1
Rearranging this equation to

ks k; =l

(A(tj,tj) - —i'-’—AI(tJ' , tj))Uj = F]’ + éAl(tj,tj_l)Uj_x + Z 7(1 (Al(tj,tq)Uq + Al(tj 3 tq—l)Uq—l)
g=1

and taking k; small enough for the left hand side term to be invertible allows successive solution
for Ug, Uy, ... ,Us, thus yielding the approximation to u"(z,t) by substituting U; for U(t;) in
(3.1.4) giving (uh(z))j. We note here that the trapezoidal method does not require starting values

and is not restricted to constant k£ as higher order methods would be. Also, since the scheme has
a repetition factor of 1 it is numerically stable in sense of Linz, see for example [13,14].

4.2.2 Completion of the error estimate for P;.

To build upon the semi-discrete error estimate of theorem 3.2.1 we will denote the fully discrete
solution to P™* at each t; € T by (ut(z)), and also define 8(z, t,) := uh(z, t,)— (u(z)) Vt, € I*.
We then have

lu(z, tr) = (u*(2)) I} < llu(z, tr) = u*(z, t)]| + 18(z, )] (4.2.6)

As the first term on the right hand side of (4.2.6) has been bounded in theorem 3.2.1 we now
seek an estimate for 6 in the ||-||; o norm. Assuming a constant time step k, (4.2.5) may be written
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as:
Find (u*(z))_ € V" for each t, € I* such that Yv* € V*

a((Atr, tr), pltr, t.), (uh),), v*) — ka,qa((/\'(t,,tq),u'(t,,tq), (uh)),v*) = F,, (4.2.7)

q=0

where the w,, are the weights associated with the trapezoidal rule (4.2.1). Subtraction of (4.2.7)
from (3.2.2) evaluated at ¢ = ¢, gives (using (4.2.1))

a((Mtr tr), 1tr, 1), 0(8:)), ") = 8(k,te) + £ wrg a((N (b tg), 1/t 84), 8(8)), 0")  (4.2.8)

q:O

and, assuming certain smoothness in time, specifically u*(z,-) € C%(Z)(for this it is sufficient to
strengthen assumption 2.2.1 such that I(v;-) € C?(Z), see for example [13].)

2
5(k,ty) = Crk2-(,%a((/\’(t,,?),u’(t,,%),uh(z,?)),v’_‘), 7el0,t]. (4.2.9)

We choose v* = 6, := 6(t,) € V* and again use the V-ellipticity (remark 2.2.1) on the term on the
left hand side of (4.2.8) giving a constant C;(t) > 0 such that

Cr(te )03 0 < 8(kyt) + kD wrg a((N(te,tg), ' (te,24),6,), 6r). (4.2.10)

g=0

To bound the right hand side of (4.2.10) we observe that

/ N(z,tr,tg)V-0(z,t,)V-0(z,t,) dz < / Nz, t,,t0)| |V-0(z, )| |V-0(z,t,)| dz
Q Q

< Cor(A) 1184l 116r (11,0, (4.2.11)
and
/nu'(x,tr,tq)&j((’q)fij(ff’r) dz S/ﬂ W' (2, tr, )] leis ()] leij (B¢ )] d
< 9Cr (1) 1104111, [16- 1,0 (4.2.12)
where

0 < CGT(A) = ”’\I(x’tr’tq)uo,oo,ﬂ.y
0 < Corlp) := [l (2, tr, tg)llo,00,02-

The strict inequality is a consequence of assumption 2.1.1. Then combining (4.2.10-12) gives

Cr(te)ll6-I1F o < 16(k, )] + kI8 1110 D wrg (Cor(A) + 9C (1)) 19,0

g=0
< [8(k, t.)| + Calte JENBell0 Y 16110, (4.2.13)
¢=0
with
Ca(t,) = ess sup {|w,,,| 1Cor(A) + gcq,(p)|}. (4.2.14)
0<g<r

Turning to the quadrature error, §, we see from (4.2.9) that

16(k,1,)] < |cr|k2(l [ 0,9t (3)) 00, de] 4| [ e Py () s 00 dwl)

< lcrw(u(x'(tr,%)V-u"m)“uo,n I (b Plesy (u"(f)))”no,n) 16l
< Catr, M K210, ]|1 0. (4.2.15)
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Using this in (4.2.13) we have

Cr(t -l < Ca(te, W")E + Co(t, )k S 18110

g=0
or, for k small enough, by rearrangement this is
r—1
(Ci(tr) = kCa(t-))0: 11,0 < Caltr, uhJE? + Ca(t )k Y 164l 0,
q=0
therefore .
19-l,0 < Cs(u")k> + Cak Y |I6gl1a Vi, €IF, (4.2.16)
g=0
where .
Co(t) Cs(t,u")

= NN Lo C g = C1(t) — kCy(8)
= S Ik M SEPEn - ke

We may now bring these results together and state the following theorem for the discrete problem
P'f’k:

Theorem 4.2.1. If the conditions of theorem 3.2.1 are satisfied together with the additional re-
quirements: 1) k < Cy(t)/Ca(t) ¥t € T, 1i) assumption 2.2.1 is strengthened so that g(z,-), f(z,-) €
C*(T). Then for the error associated with P’l"k, the fully discrete approximation to Py: Vt, €
I* 3C > 0 depending upon u(z,t) and u®(z,t) but independent of h and k such that

lu(z,t) = (4*(2), llua < C(ho +)) Vi, € ¥,
Proof. Apply Gronwall’s inequality (lemma 2.2.3) to (4.2.16) to give
16- 11,0 < Csk?exp(Cats) Vi, € TF,

where the” denotes suprema over I of the appropriate quantity, and then combine this result with
theorem 3.2.1 using (4.2.6) to obtain the desired result =

/4.3 Full discretization of P,.

e

q.

4.3.1 Eull_discretization.

Wit till in force we obtain a fully discrete analogue of (3.3.3) by employing the following
finite differénice replacement [11]:

I

-

AU; ti
A () drn =t [ o) a, (43.1)
1 i Jti
where
AU = Ui = Uiy, 1< < I, with U,‘(I) =~ U(J},t,’). (4.3.2)
Applying this to (3.3.3) we obtain:

P*: Find (uh(:c))j € V" for each t; € I* such that

J tq
ZAU‘I/ Altj,T)dr=1b;, 1<j<I, (4.3.3)
g=1 kq tg—1
with
Uo = (4(0,0)) ™" F, (4.3.4)

where (4.3.4) follows from (3.3.4). Rearranging (4.3.3) U; is given explicitly in terms of known
quantities. Note that this method of discretization corresponds closely to the midpoint rule for
Volterra first kind integral equations which is known to have desirable convergence and stabilty
properties [13]. The numerical results presented in §5 bear this observation out. Again we note
that the method is not restricted to constant k as higher order methods, obtained by higher order
finite difference approximations, would be.
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4.3.2 Completion of the error estimate for P,.

We again use 8 as defined in §4.2.2 and employ a constant time step k to provide a bound for 8,

in the norm || - {|1,n. We commence by evaluating (3.3.2) at t = ¢, € Z* and subtract (4.3.3) from
this, giving

r tq
Z/ a((/\(tr, ), (e, 7)), Xq), vh) dr=0 Vol e V| (4.3.5)
g=1"ta-1
where
AU,
Xg¢ = (uh(z, T))I - —_’E_q’ TE (tq_l,tq) (436)
AU, = Uy — Uy (4.3.7)

Now, assuming sufficient smoothness with respect to time, we use Taylor’s series about the mid-
point of each time interval (t4-1,t,). Specifically we assume u(z,-) € C*(Z) (i.e. we strengthen
assumption 2.2.1 to: f(z,-), g(x,-) € C}(Z).) and define for 1 < ¢ < r and 7 € (t,_1,¢,)

(“h(tq) - uh(tq—l))

5(g,7) = (u*(7)" = p

(4.3.8)

and note that Taylor’s series with the Lagrange form of the remainder gives

o _ h " (T - cq)2 h "o _If_z_ h "
6(q,7) := (7= cg){u(cg))" + — (uP(a1,4(7))) 51 (uh(az,)) (4.3.9)
cq = (tg—1 +14)/2
ay,4(7) == ¢g +w(T —¢g) for some w € (0,1)
azq € (tQ—l;tq)-

Hence, since u®(z,t;) = Uy(z) + 8, the function x, is given by

8, —6,_
Xg == %1— +6(q,T) forT e (tq——lytq)y 1 <g<r. (4310)

Now we choose v* = (0(1:))r in (4.3.5) giving

Z/ " a((Atr 7). itr, 7), (B = Oq-)/k + 8(q, 7)), 0,) dr =0,
g=1 tg-1

expanding the definition of a((A, g, - ), - ) given by (2.2.7) we write this as

tq—1

1 r tq tq
7‘; Z L V(G,, - 04_1)V'0r / /\(tr, T) dr + E,‘j(gq - eq_l)E,'j (9,-)/ /l(tr, T) dr dr
q=1 tq-1

+ Z/t ’ a((A(tr, ), u(ts, 7), 8(g, 7)), 8,) dr = 0. (4.3.11)

g=1 q-1
Rearranging the sum gives, equivalently

t, t,
%/ V.6,9.9, / A, 7) d7'+e,-j(0,)e,-j(0,)/ ulty, 7) dr dz
Q troa e

r—1 t t
1 q q+1
+ —Z/ v.e,v-eq[/ Mty T) dr—/ Ay, 7) dr] dz
k= Ja ¢ t

q=1 q

+%§Awmmw4[ wanlthﬂwMz

tq
q-1 q

+ ;/tila((/\(tr,r),l‘(tr,T),5((1,7')),0,) dr =0. (4312)
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Due to the fact that A and g may be assumed continuous in time (assumptions 2.1.1) this may be
rewritten, by liberally applying the mean value theorem, as

/ )\(tra‘f—'lr) Varvor + H(tr,?Zr)eij(gr)eij(er) dz
Q
r—1
— kY / Nt F1rg) V0.0, + ' (b Farg)e; (80 )35 (8,) dz
=178
r tq
+ Z/ a((’\(trr‘r)v#(tﬁ"—)aé(%T))yar) dr =0, (4.3.13)
q=1 tg-1

where 0 < Ci < 2. Now, A(t,, 71r), p(tr, T2r) > 0 by assumption 2.1.1, so observing remark 2.2.1
AC,(tr) > 0 such that

r—1
ot Nl S Ceb 3, [ N(tr Fra) 90,50 + 4t Farg)esg (O ey (0y) d
=178

r tq
- Z/ a((Atr, ), u(tr,7),8(g, 7)), 6) dr. (4.3.14)
g=1 te—1
Taking absolute values we express (4.3.14) as
r—-1 )
Cr(te)18- 1120 < Cik Y 118gl11,all6e 1,0 (1N (Er, Frrg)| + 91 (2, Farg) )
9=1

r
+2
g=1

tq
/ a((A(tr,7), ks, 7),8(q, 7)), 6r) dr|. (4.3.15)
te-1
Turning now to the term involving the truncation error §. We note that from (4.3.9),

/t (Mt ), 1ltr, 7), (g, 7)), Br) dr = /t Ca(Mtr, 1) plte, 7, 5(g, 7)), 6) T (4.3.16)

where
8o )= TS (s (1) - o ()" (43.17)
as a consequence of the elementary result
tq
/t l(1' —¢g)dT = 0. (4.3.18)

Thus we have for each component of the sum in (4.3.15)

[ a0ttt 78007, 6)

IN

tq _ tq
/n V6, / A(tr, 7)| [V-(g, 7)| drdz + /n lei3(6,)] / lults, )| leis (B(g, 7))| drde
tg-1 tg—1

IN

EA(t 7)] /n V-6, [V-3(a, 7)| dz + Klalte, 7)] /n leii (6] less (B(a, 7)) da

< kA, 7L 18- H,0llE(g, 7o)lls,a + Elidte, 7| 18 11,all8(g, 7o)l 0, (4.3.19)

From (4.3.17) we have the bound %
ll6(a, 1,0, 116(a, Pl < C5k? VT eT | (4.3.20)
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Now if we take appropriate suprema over the interval [to,t,] we may write (4.3.15) as

r—1

Nbelln < Catrk® +Csk D |6l Vi € I". (4.3.21)

g=1

Hence we have the following

Theorem 4.3.1. If the conditions required by theorem 3.3.1 are satisfied and further if assumption
2.2.1 is strengthened to f(z,-), g(z,-) € C3(Z) then for the error associated with P;’k, the fully
discrete approximation to Py, Vt, € ¥ 3C > 0 depending upon u”*(z,t) but not on h and k such
that

Hu(z,t,) — (“h(z)),nl.ﬂ < C(h*™ + k%) vt € IF.

Proof. Apply lemma 2.2.3 to (4.3.21) to obtain
61110 < Catrk* exp(Cstr) Vi, € IF,
and use (4.2.6) in the context of Pa*.

5 Numerical experiments.
5.1 Preamble.

In this final section we predicate the theoretical convergence rates given in theorems 4.2.1 and 4.3.1
by computing the approximate solution to simple model problems for which the analytical solutions
are known. These solutions are found via the correspondence principle [4], which enables the
viscoelastic solution to be derived from the corresponding linear elastic solution by using integral
transform techniques. The correspondence principle is only applicable to non-ageing materials.
Accordingly we set, neglecting the = dependence,

At,T)= At - 1), (5.1.1)
plt, ) = p(t—1). (5.1.2)

We shall assume that the time dependent part of A and g may be modelled adequately by expres-
sions of the form:

N
p(t) =Y Cie™™, (5.1.3)
1=0

which are suggested by the appearance of stress relaxation curves for real viscoelastic materials,
see the data for “Maranyl”[2] in §5.4 for example, or the curves given in [1]. This form for A and p
introduces an important simplification into the numerical algorithms {4.2.5) and (4.3.3). Usually
in solving these kinds of integral equation problems the solutions obtained at each time step up
until the current one must be stored in order to compute the history integral. This can be very

demanding on computational storage. However, for history kernels of the form (5.1.3) and for Pg’k
we exploit the relation:

i tica ty
/ et Tg(r) dr = e_""("—““)/ e~ (1T g () dT+/ e~ (t=Tg(r) dr (5.1.4)
0 0 tiy

for any function g, i.e. for each term of the sum in (5.1.3) the history integral at time t; may
be obtained simply by attenuating the result at the previous time, £;_;, by an amount dependent
upon the current time step. Thus only N + 1 solution vectors, per viscoelastic function, need be
stored in order to evaluate the history term completely, see [11]. A similar observation can be
made for P’l'”c

In the final subsection we compare the numerically computed resuits with the experimental
stress relaxation and creep data for a real engineering material [2], which we assume to be non-
ageing. Also, following the manufacturer’s recommendations we take A(t) oc u(t), the constant of
proportionality being obtained from the linear elastic definitions of the Lamé coefficients, which
are given usually in terms of Young’s modulus and the Poisson ratio, the latter of which will
be constant when this proportionality exists between the viscoelastic functions and the former is
embodied in the relaxation functions themselves.
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5.2 Benchmark analytical solutions.

5.2.1 Linear elastic solutions.
For the problem (2.2.1,...,3) we take n = 2 and define the domain Q to be the rectangle

Q:={z,yeR: 0<z<l, 0<y<2k L k>0}, (5.2.1)

and present two linear elastic solutions to the problems arising when Q has certain body forces
and surface tractions imposed over it and on it (resp.). (Although ! and k have been used in
previous sections with quite different meanings, the usage in (5.2.1) is essentially confined to this
section (5.2), definite values of [ and k, in this sense, being assigned in all the following work.)
The first of these solutions has displacements that vary quadratically in z and y, so that if the
finite element employed in the computation is composed of quadratic basis functions the spatial
behavior of the displacements may be captured exactly by the numerical scheme thus isolating
the time discretization error. The second solution is completely artificial in that the body forces
are dependent on the Poisson ratio of the material, for our purposes this is immaterial since we
are interested only in the behaviour of the numerical solution, the displacements arising in this
case are sinusoidal. The domain Q is shown schematically in figure 5.2.1, where, in the previous
notation

(z,y) = (21, 22), (5.2.2)
(up,vE) := (u1,u2), (5.2.3)
(X,Y) = (f1, f2). (5.2.4)

The subscript E denotes linear elastic solutions. When this subscript is dropped in §§5.2.2,3 the
solutions will be for the corresponding linear viscoelastic solution.

, U
YA

2k

Figure 5.2.1

i) Quadratic solution.

To obtain a quadratic variation of displacement we impose upon 2 the following boundary
conditions

up(0, k) = vg(0,k) = vg(l, k) = 0, (5.2.5)

and assume that a spatially constant body force, X(t), acts whilst Y{t) = 0. Then we have the
single non-zero surface traction:

g =1X(t) VY(z,y)€{z=0, 0<y< 2k} (5.2.6)
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Under these conditions the solution to (2.2.1) under the assumption of plane stress is given by

up(z,y,t) = S5 2z — %) - v(y — k)?|, (5.2.7)
vee9,0 = 2@ -y -, (5.28)
o= X(t) (I —z), (5.2.9)
012 = 09292 = 0. (5210)

Rotating 2 through 90° clockwise we see that this problem corresponds to the physical situation
of a plate suspended from the midpoint of its uppermost edge and deflecting vertically under the
action of its own weight. In these expressions E is the Young’s modulus of the material and v < 1/2
the Poisson ratio.

t1) Trigonometric solution.
As remarked above, this is an artificial solution because the body forces depend upon the
Poisson ratio of the material. We set

_ s(w+ HhN(Q)

X(t) = e ¢z + &2z L(t)sin E(y — 1/2), (5.2.11)
Y(t) = 5—("(—:_91—1‘)—(9 cos€(y — 1/2) + ¢%(y — 1/2)N(¢) sin ¢z, (5.2.12)

and employ the essential boundary condition (5.2.5). Under the assumption of plane stress it can
be shown that the solution of (2.2.1) is now given by

ug(z,y,t) = g(-l—j;g#@a:sinﬁ(y -1/2), (5.2.13)
vp(z,y,t) = gg-:—*—-g‘—)ji@(y — 1/2)sin ¢z, (5.2.14)
o1z, y,t) = 0 _2_ » [L(t) sinf(y — 1/2) + vN(t)sin dn:] , (5.2.15)
oa2(z,y,1) = (TE—VS [N(t) sin gz + v L(t)siné(y — 1/2)] , (5.2.16)
o12(z,y,t) = ExL(t) cos€(y — 1/2) + #(y — 1/2)N(t) cos ¢z, (5.2.17)

when the tractions are applied consistent with these expressions for o;;.

5.2.2 Linear viscoelastic solutions (non-ageing).

Linear viscoelastic solutions for non-ageing materials may be generated from particular types of
linear elastic solutions via the correspondence principle [3,4]. To give a simple example of how this
may be achieved we firstly assume that the time dependent parts of A and u are proportional, i.e.

A(t) o p(t), (5.2.18)

this is tantamount to assuming a constant Poisson ratio. In terms of the D matrix of (2.1.12) or
(2.1.13) this means that we have, omitting again the dependence on z, the representation

D(t) = Dop(t), (5.2.19)

where Dy is a constant matrix. Thus we have the relation

o(t) = / Dod(t — T)e(r) dr, O(t) ::—%[H(t)go(t)], (5.2.20)

where H(t) is the Heaviside step function. The function ¢(t) represents the time dependent
behaviour of A, and therefore of u also, the constant of proportionality being embodied in the



3-11-1992 16:27 Page 20

matrix Dg. Now taking, for example, the Laplace transform of (5.2.20) which is of the convolution
form we have

&(s) = Dod(s)é(s). (5.2.21)

Notice that any spatial variation of these quantities is unaffected by this operation.
Also, suppose that we know a linear elastic solution expressed in the form

og(z) = Dgeg(z) (5.2.22)

which is time independent. The correspondence principle may now be invoked; this consists
of replacing Dg in (5.2.22) by Dod(s) and treating op and eg as &(s) and £(s) respectively.
The result may then be transformed inversely to yield the viscoelastic solution corresponding to
(5.2.22). Obviously, if the quantities in (5.2.22) are time dependent this must be incorporated in
the transformation-replacement-inversion procedure.

We consider the simple case where the body forces X(t) and Y (t) are expressed in terms of
the single function

p(t) = a1 + e P*(az sinwt + a3 cos wt) (5.2.23)
a; | aw + a3(s +f)

AR A Py

(5.2.24)

In the first example we assume that X(¢) = p(t) and in the second example we assume that X(t)
and Y (t) are given by (5.2.11-12) with L(t) = Lp(t) and N(t) = Np(t) where L and N do not vary

with time.

For simplicity we take the stress relaxation function ¢(t) of the form (5.1.3) but with only 2
terms, 1.e.

o(t) = Co+ Cre™",  Co,C1,b> 0, (5.2.25)
= $(s) = go + -———Sﬂf 7 Re(b) < Re(s), (5.2.26)

where
go 1= Co+Cy, >0,
g1:= —bC, <0.

Performing the replacement-inversion procedure indicated earlier we find that for ug(z,y,t) and
vg(z,y,t) given by either the quadratic or sinusoidal solution

u(z,y,t) — 'U(il?,y,t) — al(bg0+gle_ht)
uE(x)yst) UE(z)y)t) go(bgo+91)

L - asw + a - e~ ht
T (=B 5 o) [‘b h) ez + as(6 — h)

+e Pt ((h=B)b—B)+ w2)(a2 sinwt + a3 coswt)

+ e P'w(b — h)(azsinwt — ay cos wt)] , (5.2.27)
where
b
ho= Hoto (5.2.28)
go

Expression (5.2.27) furnishes us with the exact solution to the corresponding linear, non-ageing
viscoelastic problem.



3-11-1992 16:27 Page 21

5.2.3 Viscoelastic Poisson effect.

In more general cases the assumption of constant Poisson ratio embodied in (5.2.18) will not be
appropriate. In this case we must assume that the time dependent behaviour of A and p will be
uncorrelated and a deformed body may therefore exhibit a viscoelastic Poisson effect, i.e. a time
dependent Poisson ratio.

Again using correspondence principles, this time under the assumption of plane strain we
present an analytical solution to a very simple problem which exhibits this time dependent Poisson
effect. We use Q as defined by (5.2.1), with { = 1 and k = 1/2 and impose the essential boundary
condition

ug(0,y) = 0, up(l,y) = € > 0 (and constant) Vy € [0,1]

ve(z,1/2) = 0 ¥z € [0, 1],
and assume zero tractions over (z,y) € {0 < z < 1; y = 0,1} and identically zero body forces.

Note that the boundary condition (2.2.2) is violated by this. In this case the linear elastic solution
is given by

(5.2.29)

en = ¢,

ve (5.2.30)
1-v’
We may relate the Poisson ratio to the bulk modulus, K, and the shear modulus, G, by the
relations (2.1.5). Specifically we have

€22 = =

3K - 2G
and define the Lamé coefficients via
u=2G
5.2.32
A=K - 1[1‘ ( )
3
To determine the corresponding viscoelastic solution we assume the forms
K(t) = Koexp(—kot) (5.2.33)
and
G(t) = Goexp(—got) (5.2.34)

for the viscoelastic bulk and shear moduli, (the assumptions 2.1.1 are satisfied). Thinking again
of the transformation-replacement procedure outlined above, we have, in the transform domain,

_ 3Ko(s + go) — 2Go(s + ko)

7 = 5.2.
%(5) = §Ro(s + 90) ¥ 2Co(s + ko) (5.2.35)
and thus, since £ is a constant:
with
A = —43Ko — 2Gy), B = —£(3Kogo — 2Goko),
C = 3K, + 4G, D = 3Kogo + 4Goko,
we may write
. o _(B/D)  (A/C)-(B/D)
€22(s) = s T, +(D/C) (5.2.36)
= Ezz(t) = Zl/(t)
where
v(t) = No + Nyexp(—Nt) (5.2.37)
and
31{0_(]0 ad 2G0k‘o
Ng=—-———"———r—
3Kogo + 4Goko
Ny = 3Kggo - 2G0k0 _ 3K() - 2G0

''7 3Kogo + 4Goko  3Ko + 4G,
_ 3Ko + 4Gy
" 3Kogo + 4Goko
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We may think of v(t) as a manifestation of the viscoelastic Poisson ratio under plane strain, note
that go = ko = €22(0) = €22(c0) because N; = 0, which is exactly the case when it is assumed
that A o< y, i.e., the Poisson ratio is constant.

5.3 Numerical results.

In this section we shall give graphical indication of the performance of the algorithms P** and
Pg’k by solving numerically the test problems developed in the foregoing sections. For this we take,
in (5.2.1), (,2k) = (1,1). Also, rather than calculate [|u(z,t,) — (u*(z))_ll1,a to verify theorems
4.2.1 and 4.3.1 we calculate the more interesting quantity ||o(z,t,) — (a"(z))ng,n, which we may
reasonably expect to be bounded in the same way because the stress, ¢, depends upon the space
derivatives of u.

In common with the standard practice of computational finite element implementation we shall
perform all spatial integrations on a reference element using a sufficiently high order quadrature
rule. Also we take the standard 8-noded quadrilateral finite element, in which case the basis

. . 2 o _ ..
functions on this reference element are of the form Z‘. i=0 a;jz*y , where azp = 0. The domain is
=

partioned into squares of side length h such that h~! is an integer. Also, for simplicity, we take
constant time step k.

In order to determine the order of convergence (i.e. the powers of h and k) suggested by the
numerical performance of the algorithms we define § through

,3 L loglegh,gkl - log |eh,k|
- log 2

, (5.3.1)

where €5, ; is some numerically determined measure of the error resulting from the discretization,
i.e. B is the indicated order of convergence of the scheme.

For all of the problems considered we assume the time dependent part of the body forces
(5.2.23) to take the form:

p(t) = 1+exp(—%t) sin %t. (5.3.2)

Also, for the case of constant Poisson ratio we shall assume that v = 0.4 and in (5.2.25)

p(t) = 1 + exp(-2t), (5.3.3)

whilst for the variable Poisson ratio example given in §5.2.3 we shall take for (5.2.33,34)

K(t) = 8exp(—0.1t), (5.3.4)
G(t) = 4.5 exp(—0.2¢). (5.3.5)

We emphasise that the values taken for the material functions are purely arbitrary, more
realistic values are considered in the next section. Also, in order to present the graphical results
in a clear manner the solutions obtained at each time level have been interpolated to produce
continuous curves.

At the end of §4.3.1 we remarked that the numerical performance of P’z"k seems to indicate
stability, in fact it appears that if the body forces and tractions tend to functions of the space
variables alone, then for the type of relaxation function given by (5.3.3) the error due to the time
discretization appears to vanish, leaving only the error due to the spatial discretization. This
behaviour does not occur for P’f’k. Figures 5.3.1,3 illustrate this by showing how the particular
error, e((1,3),tr) == wi((1,3),¢)) — (u{‘(l,%))r varies through time. Also by taking epx to
be ||u — u"||o (the maximum norm on R") when applied to the nodal solution vector for two
computations having time steps & and 2k we show in figures 5.3.2,4 the numerically suggested
nodal convergence rate, 3, for the displacements. For these calculations we have used the quadratic

solution (5.2.7, ..., 10) in which case we expect the finite element to capture the spatial behaviour
exactly.
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puted solution for (u}(1, }))_ and the asso-
ciated error. The discretization error tends
to a constant as the body force tends to a
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mated nodal convergence rate of the dis-
placements with 3, given by (5.3.1), ob-
tained by considering k = 0.8 and k = 0.4.
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Figure 5.3.4 Algorithm P;'k, the esti-
mated nodal convergence rate of the dis-
placements with 3, given by (5.3.1), ob-
tained by considering k = 0.8 and k£ = 0.4.

Figure 5.3.3 Algorithm P;'o‘s, the com-
puted solution for (u?(1, %))r and the asso-
ciated error. The discretization error tends
to zero as the body force tends to a func-
tion of = only.

Turning now to the trigonometric solution (5.2.13,...,17) with £ = ¢ = m and L(t), N(?)
given by (5.3.2) above, figures 5.3.5,...,8 show the variation of |jo — o®||o o with time and the
numerically suggested convergence rate for the two cases k¥ € h and h <« k. In each case the
scheme appears to be O(h? + k?) as expected. The integral involved in the calculation of || - |0 o
was calculated numerically with an O(h*) quadrature rule.

Finally, in figures 5.3.9,10 we show the numerically predicted viscoelastic Poisson effect. The
caption to figure 5.3.9 shows the values assumed for the quantities defined in §5.2.3, and the figure
itself shows the displacement u, at the point (1,1), i.e. the top right hand corner of the domain.
The accompanying figure, 5.3.10, shows for interest only the apparent convergence rate of the
strain at this point.

5.4 Comparison with a real material.

In [2] design data for the I.C.I. structural nylon 66 “Maranyl” (registered trade mark), type A101
1s given. Specifically we refer to figures 1 and 3 contained therein. Figure 3 shows graphically
the response of a test piece to a constant imposed axial strain by plotting the isometric ax-
ial stress vs. time curves for percentage strains of 0.5,1.0,...,3.0,3.5 under dry conditions at
20°C. Figure 1 shows the tensile creep behaviour resulting from constant imposed axial stresses
of 500, 1000, . ..,7000, 7500 p.s.i. (pounds per square inch). Thus figures 1 and 3 represent collec-
tions of axial creep and axial stress relaxation curves respectively. Following the manufacturers
recommendation we adopt a constant Poisson ratio of 0.4.
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Figure 5.3.5 Algorithm Pi’o'l, the com-
puted value of ||o —o*|lo a. The discretiza-
tion error tends to a constant as the body
force tends to a function of z only.
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Figure 5.3.7 Algorithm PI%’I'O, the com-
puted value of ||o — (|0 n. The discretiza-
tion error tends to a constant as the body
force tends to a function of x only.
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Figure 5.3.9 Algorithm Pi.o,o.s’ the com-
puted value of 5’2‘2((11"(1,1))’_) and the
associated error, demonstrating the vis-
coelastic Poisson effect discussed in §5.2.3,
in the notation of that section we have:
£=01, Ko =8, ko =0.1, Go = 45 and
do = 0.2.
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Figure 5.3.6 Algorithm P’l"k, the esti-
mated convergence rate of ||o—a"||g o with
B, given by (5.3.1), obtained by consider-
ingh=1,k=0.12and h=0.5.k =0.05.
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Figure 5.3.8 Algorithm P’l"k, the esti-
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Figure 5.3.10 Algorithm Pi’k, the esti-
mated nodal convergence rate of 33 — €5,
at (1,1) with B, given by (5.3.1), obtained
by considering k = 0.8 and k£ = 0.4.
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In this section we use the 0.5% strain curve of figure 3 to calculate an axial stress relaxation
function of the form (5.1.3) by using a least squares curve fitting routine (routine EO4GEF of the
NAG FORTRAN library, mk14). This obviously involves non-linear minimisation and therefore
different minimising functions may result from different starting points, we found the following
coefficients to represent the stress relaxation at 0.5% strain adequate:

Co = 73 855.4 ap = 0.0
C: = 155 338.4 a; = 0.006 139 77 (5.4.1)
C, = 173 441.6 ap = 0.000 181 719

Where the units of the C; are p.s.i, and the a; are (hours)~™!.

The aim in this section is to test the predictive power of the numerical schemes by using this
relaxation function to predict the creep curves given in figure 1 of {2] (in fact for brevity we use
P’l"k only). The resulting behaviour is shown in figure 5.4.1. Here the data given in [2] has been
reproduced in part by plotting the piecewise linear interpolate to selected points of figure 1, these
are the solid lines. The calculations were performed under the assumption of plane stress.

The numericaily computed results are based on a unit square domain discretized using a single
8-noded quadrilateral element as in §5.3 with the algorithm Pi’z, i.e the time step is 2 hours, except
for the first few steps where k = 0.001 to capture the short timescale behaviour. It can be seen
that at low stresses the algorithm performs well but the deterioration of accuracy becomes very
marked as the stress levels are increased. We conclude that the viscoelastic relationships implied
by figures 1 and 3 of [2] are more complicated than we have allowed for, indeed it is most likely that
the relationship will be non-linear in some way. The extension to non-linearity can occur in two
independent ways: firstly the assumption of infinitesimal strain (2.1.3) may be replaced by some
finite strain measure, secondly, the linear constitutive relationships (2.1.15,16) may be replaced by
some more general form. Obviously the conjunction of these possibilities gives the most general
case. Knauss and Emri [15] give an empirically determined formulation of non-linear viscoelasticity
(also discussed in [16]) based on considering the free volume of the material which is used to define a
reduced time, in this case the infinitesimal strain assumption is retained. However, the formulation
of the more general problem consistent with the requirements of continuum mechanics has, to our
knowledge, not yet been acheived [17)].
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